Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 620(7974): 600-606, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37495691

RESUMEN

Social anthropology and ethnographic studies have described kinship systems and networks of contact and exchange in extant populations1-4. However, for prehistoric societies, these systems can be studied only indirectly from biological and cultural remains. Stable isotope data, sex and age at death can provide insights into the demographic structure of a burial community and identify local versus non-local childhood signatures, archaeogenetic data can reconstruct the biological relationships between individuals, which enables the reconstruction of pedigrees, and combined evidence informs on kinship practices and residence patterns in prehistoric societies. Here we report ancient DNA, strontium isotope and contextual data from more than 100 individuals from the site Gurgy 'les Noisats' (France), dated to the western European Neolithic around 4850-4500 BC. We find that this burial community was genetically connected by two main pedigrees, spanning seven generations, that were patrilocal and patrilineal, with evidence for female exogamy and exchange with genetically close neighbouring groups. The microdemographic structure of individuals linked and unlinked to the pedigrees reveals additional information about the social structure, living conditions and site occupation. The absence of half-siblings and the high number of adult full siblings suggest that there were stable health conditions and a supportive social network, facilitating high fertility and low mortality5. Age-structure differences and strontium isotope results by generation indicate that the site was used for just a few decades, providing new insights into shifting sedentary farming practices during the European Neolithic.


Asunto(s)
Antropología Cultural , Linaje , Medio Social , Adulto , Niño , Femenino , Humanos , Masculino , Agricultura/historia , Entierro/historia , Padre/historia , Fertilidad , Francia , Historia Antigua , Mortalidad/historia , Hermanos , Apoyo Social/historia , Isótopos de Estroncio/análisis , Madres/historia
2.
iScience ; 25(11): 105387, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36405775

RESUMEN

Archaeological research shows that the dispersal of the Neolithic took a more complex turn when reaching western Europe, painting a contrasted picture of interactions between autochthonous hunter-gatherers (HGs) and incoming farmers. In order to clarify the mode, the intensity, and the regional variability of biological exchanges implied in these processes, we report new palaeogenomic data from Occitanie, a key region in Southern France. Genomic data from 28 individuals originating from six sites spanning from c. 5,500 to c. 2,500 BCE allow us to characterize regional patterns of ancestries throughout the Neolithic period. Results highlight major differences between the Mediterranean and Continental Neolithic expansion routes regarding both migration and interaction processes. High proportions of HG ancestry in both Early and Late Neolithic groups in Southern France support multiple pulses of inter-group gene flow throughout time and space and confirm the need for regional studies to address the complexity of the processes involved.

3.
Proc Natl Acad Sci U S A ; 119(18): e2120786119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35446690

RESUMEN

The Middle Neolithic in western Europe is characterized by monumental funerary structures, known as megaliths, along the Atlantic façade. The first manifestations of this phenomenon occurred in modern-day France with the long mounds of the Cerny culture. Here, we present genome-wide data from the fifth-millennium BCE site of Fleury-sur-Orne in Normandy (France), famous for its impressively long monuments built for selected individuals. The site encompasses 32 monuments of variable sizes, containing the burials of 19 individuals from the Neolithic period. To address who was buried at the site, we generated genome-wide data for 14 individuals, of whom 13 are males, completing previously published data [M. Rivollat et al., Sci. Adv. 6, eaaz5344 (2020)]. Population genetic and Y chromosome analyses show that the Fleury-sur-Orne group fits within western European Neolithic genetic diversity and that the arrival of a new group is detected after 4,000 calibrated BCE. The results of analyzing uniparentally inherited markers and an overall low number of long runs of homozygosity suggest a patrilineal group practicing female exogamy. We find two pairs of individuals to be father and son, buried together in the same monument/grave. No other biological relationship can link monuments together, suggesting that each monument was dedicated to a genetically independent lineage. The combined data and documented father­son line of descent suggest a male-mediated transmission of sociopolitical authority. However, a single female buried with an arrowhead, otherwise considered a symbol of power of the male elite of the Cerny culture, questions a strictly biological sex bias in the burial rites of this otherwise "masculine" monumental cemetery.


Asunto(s)
Cementerios , ADN Antiguo , Arqueología , Entierro/historia , ADN Mitocondrial/genética , Femenino , Genómica , Historia Antigua , Humanos , Masculino
4.
iScience ; 25(4): 104094, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35402880

RESUMEN

The Iron Age period occupies an important place in French history because the Gauls are regularly presented as the direct ancestors of the extant French population. We documented here the genomic diversity of Iron Age communities originating from six French regions. The 49 acquired genomes permitted us to highlight an absence of discontinuity between Bronze Age and Iron Age groups in France, lending support to a cultural transition linked to progressive local economic changes rather than to a massive influx of allochthone groups. Genomic analyses revealed strong genetic homogeneity among the regional groups associated with distinct archaeological cultures. This genomic homogenization appears to be linked to individuals' mobility between regions and gene flow with neighbouring groups from England and Spain. Thus, the results globally support a common genomic legacy for the Iron Age population of modern-day France that could be linked to recurrent gene flow between culturally differentiated communities.

5.
Sci Adv ; 6(22): eaaz5344, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32523989

RESUMEN

Starting from 12,000 years ago in the Middle East, the Neolithic lifestyle spread across Europe via separate continental and Mediterranean routes. Genomes from early European farmers have shown a clear Near Eastern/Anatolian genetic affinity with limited contribution from hunter-gatherers. However, no genomic data are available from modern-day France, where both routes converged, as evidenced by a mosaic cultural pattern. Here, we present genome-wide data from 101 individuals from 12 sites covering today's France and Germany from the Mesolithic (N = 3) to the Neolithic (N = 98) (7000-3000 BCE). Using the genetic substructure observed in European hunter-gatherers, we characterize diverse patterns of admixture in different regions, consistent with both routes of expansion. Early western European farmers show a higher proportion of distinctly western hunter-gatherer ancestry compared to central/southeastern farmers. Our data highlight the complexity of the biological interactions during the Neolithic expansion by revealing major regional variations.

6.
Am J Phys Anthropol ; 173(2): 218-235, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32557548

RESUMEN

OBJECTIVES: The aims of this research are to explore the diet, mobility, social organization, and environmental exploitation patterns of early Mediterranean farmers, particularly the role of marine and plant resources in these foodways. In addition, this work strives to document possible gendered patterns of behavior linked to the neolithization of this ecologically rich area. To achieve this, a set of multiproxy analyses (isotopic analyses, dental calculus, microremains analysis, ancient DNA) were performed on an exceptional deposit (n = 61) of human remains from the Les Bréguières site (France), dating to the transition of the sixth to the fifth millennium BCE. MATERIALS AND METHODS: The samples used in this study were excavated from the Les Bréguières site (Mougins, Alpes-Maritimes, France), located along the southeastern Mediterranean coastline of France. Stable isotope analyses (C, N) on bone collagen (17 coxal bones, 35 craniofacial elements) were performed as a means to infer protein intake during tissue development. Sulfur isotope ratios were used as indicators of geographical and environmental points of origin. The study of ancient dental calculus helped document the consumption of plants. Strontium isotope analysis on tooth enamel (n = 56) was conducted to infer human provenance and territorial mobility. Finally, ancient DNA analysis was performed to study maternal versus paternal diversity within this Neolithic group (n = 30). RESULTS: Stable isotope ratios for human bones range from -20.3 to -18.1‰ for C, from 8.9 to 11.1‰ for N and from 6.4 to 15‰ for S. Domestic animal data range from -22.0 to -20.2‰ for C, from 4.1 to 6.9‰ for N, and from 10.2 to 12.5‰ for S. Human enamel 87 Sr/86 Sr range from 0.7081 to 0.7102, slightly wider than the animal range (between 0.7087 and 0.7096). Starch and phytolith microremains were recovered as well as other types of remains (e.g., hairs, diatoms, fungal spores). Starch grains include Triticeae type and phytolith includes dicotyledons and monocot types as panicoid grasses. Mitochondrial DNA characterized eight different maternal lineages: H1, H3, HV (5.26%), J (10.53%), J1, K, T (5.2%), and U5 (10.53%) but no sample yielded reproducible Y chromosome SNPs, preventing paternal lineage characterization. DISCUSSION: Carbon and nitrogen stable isotope ratios indicate a consumption of protein by humans mainly focused on terrestrial animals and possible exploitation of marine resources for one male and one undetermined adult. Sulfur stable isotope ratios allowed distinguishing groups with different geographical origins, including two females possibly more exposed to the sea spray effect. While strontium isotope data do not indicate different origins for the individuals, mitochondrial lineage diversity from petrous bone DNA suggests the burial includes genetically differentiated groups or a group practicing patrilocality. Moreover, the diversity of plant microremains recorded in dental calculus provide the first evidence that the groups of Les Bréguières consumed a wide breadth of plant foods (as cereals and wild taxa) that required access to diverse environments. This transdisciplinary research paves the way for new perspectives and highlights the relevance for novel research of contexts (whether recently discovered or in museum collections) excavated near shorelines, due to the richness of the biodiversity and the wide range of edible resources available.


Asunto(s)
Dieta/historia , Migración Humana/historia , Animales , Antropología Física , Huesos/química , ADN Antiguo/análisis , ADN Mitocondrial , Cálculos Dentales/historia , Grano Comestible/genética , Alimentos/historia , Francia , Historia Antigua , Humanos , Isótopos/análisis , Región Mediterránea
7.
Am J Phys Anthropol ; 170(4): 507-518, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31599974

RESUMEN

OBJECTIVES: The history of the Caribbean region is marked by numerous and various successive migration waves that resulted in a global blending of African, European, and Amerindian lineages. As the origin and genetic composition of the current population of French Caribbean islands has not been studied to date, we used both mitochondrial DNA and Y-chromosome markers to complete the characterization of the dynamics of admixture in the Guadeloupe archipelago. MATERIALS AND METHODS: We sequenced the mitochondrial hypervariable regions and genotyped mitochondrial and Y-chromosomal single nucleotide polymorphisms (SNPs) of 198 individuals from five localities of the Guadeloupe archipelago. RESULTS: The maternal haplogroups revealed a blend of 85% African lineages (mainly traced to Western, West-Central, and South-Eastern Africa), 12.5% Eurasian lineages, and 0.5% Amerindian lineages. We highlighted disequilibria between European paternal contribution (44%) and European maternal contribution (7%), pointing out an important sexual asymmetry. Finally, the estimated Native American component was strikingly low and supported the near-extinction of native lineages in the region. DISCUSSION: We confirmed that all historically known migratory events indeed left a visible genetic imprint in the contemporary Caribbean populations. The data gathered clearly demonstrated the significant impact of the transatlantic slave trade on the Guadeloupean population's constitution. Altogether, the data in our study confirm that in the Caribbean region, human population variation is correlated with colonial and postcolonial policies and unique island histories.


Asunto(s)
Cromosomas Humanos Y , ADN Mitocondrial/análisis , Migración Humana , Polimorfismo de Nucleótido Simple , África/etnología , Europa (Continente)/etnología , Femenino , Genotipo , Guadalupe , Herencia , Humanos , Masculino , América del Sur/etnología
8.
PLoS One ; 13(12): e0207459, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30521562

RESUMEN

The compilation of archaeological and genetic data for ancient European human groups has provided persuasive evidence for a complex series of migrations, population replacements and admixture until the Bronze Age. If the Bronze-to-Iron Age transition has been well documented archaeologically, ancient DNA (aDNA) remains rare for the latter period and does not precisely reflect the genetic diversity of European Celtic groups. In order to document the evolution of European communities, we analysed 45 individuals from the Late Iron Age (La Tène) Urville-Nacqueville necropolis in northwestern France, a region recognized as a major cultural contact zone between groups from both sides of the Channel. The characterization of 37 HVS-I mitochondrial sequences and 40 haplogroups provided the largest maternal gene pool yet recovered for the European Iron Age. First, descriptive analyses allowed us to demonstrate the presence of substantial amounts of steppe-related mitochondrial ancestry in the community, which is consistent with the expansion of Bell Beaker groups bearing an important steppe legacy in northwestern Europe at approximately 2500 BC. Second, maternal genetic affinities highlighted with Bronze Age groups from Great Britain and the Iberian Peninsula regions tends to support the idea that the continuous cultural exchanges documented archaeologically across the Channel and along the Atlantic coast (during and after the Bronze Age period) were accompanied by significant gene flow. Lastly, our results suggest a maternal genetic continuity between Bronze Age and Iron Age groups that would argue in favour of a cultural transition linked to progressive local economic changes rather than to a massive influx of allochthone groups. The palaeogenetic data gathered for the Urville-Nacqueville group constitute an important step in the biological characterization of European Iron age groups. Clearly, more numerous and diachronic aDNA data are needed to fully understand the complex relationship between the cultural and biological evolution of groups from the period.


Asunto(s)
ADN Mitocondrial/genética , Población Blanca/genética , Arqueología/métodos , ADN Antiguo/análisis , ADN Mitocondrial/análisis , Europa (Continente)/etnología , Francia/etnología , Pool de Genes , Variación Genética/genética , Genética de Población/métodos , Genotipo , Haplotipos , Historia Antigua , Humanos , Reino Unido
9.
PLoS One ; 12(7): e0179742, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28678860

RESUMEN

In Europe, the Middle Neolithic is characterized by an important diversification of cultures. In northeastern France, the appearance of the Michelsberg culture has been correlated with major cultural changes and interpreted as the result of the settlement of new groups originating from the Paris Basin. This cultural transition has been accompanied by the expansion of particular funerary practices involving inhumations within circular pits and individuals in "non-conventional" positions (deposited in the pits without any particular treatment). If the status of such individuals has been highly debated, the sacrifice hypothesis has been retained for the site of Gougenheim (Alsace). At the regional level, the analysis of the Gougenheim mitochondrial gene pool (SNPs and HVR-I sequence analyses) permitted us to highlight a major genetic break associated with the emergence of the Michelsberg in the region. This genetic discontinuity appeared to be linked to new affinities with farmers from the Paris Basin, correlated to a noticeable hunter-gatherer legacy. All of the evidence gathered supports (i) the occidental origin of the Michelsberg groups and (ii) the potential implication of this migration in the progression of the hunter-gatherer legacy from the Paris Basin to Alsace / Western Germany at the beginning of the Late Neolithic. At the local level, we noted some differences in the maternal gene pool of individuals in "conventional" vs. "non-conventional" positions. The relative genetic isolation of these sub-groups nicely echoes both their social distinction and the hypothesis of sacrifices retained for the site. Our investigation demonstrates that a multi-scale aDNA study of ancient communities offers a unique opportunity to disentangle the complex relationships between cultural and biological evolution.


Asunto(s)
Conducta Ceremonial , ADN Antiguo/aislamiento & purificación , Entierro , Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , ADN Mitocondrial/aislamiento & purificación , Agricultores , Femenino , Francia , Migración Humana , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
10.
Eur J Hum Genet ; 25(3): 388-392, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28029148

RESUMEN

Recent ancient DNA studies on European Neolithic human populations have provided persuasive evidence of a major migration of farmers originating from the Aegean, accompanied by sporadic hunter-gatherer admixture into early Neolithic populations, but increasing toward the Late Neolithic. In this context, ancient mitochondrial DNA data collected from the Neolithic necropolis of Gurgy (Paris Basin, France), the largest mitochondrial DNA sample obtained from a single archeological site for the Early/Middle Neolithic period, indicate little differentiation from farmers associated to both the Danubian and Mediterranean Neolithic migration routes, as well as from Western European hunter-gatherers. To test whether this pattern of differentiation could arise in a single unstructured population by genetic drift alone, we used serial coalescent simulations. We explore female effective population size parameter combinations at the time of the colonization of Europe 45000 years ago and the most recent of the Neolithic samples analyzed in this study 5900 years ago, and identify conditions under which population panmixia between hunter-gatherers/Early-Middle Neolithic farmers and Gurgy cannot be rejected. In relation to other studies on the current debate of the origins of Europeans, these results suggest increasing hunter-gatherer admixture into farmers' group migrating farther west in Europe.


Asunto(s)
ADN Mitocondrial/genética , Evolución Molecular , Modelos Genéticos , Europa (Continente) , Femenino , Flujo Genético , Migración Humana , Humanos , Masculino , Linaje , Población Blanca/genética
11.
Am J Phys Anthropol ; 161(3): 522-529, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27447353

RESUMEN

OBJECTIVES: The arrival of Neolithic farmers in Europe was the source of major cultural and genetic transitions. Neolithic settlers brought a new set of maternal lineages (mitochondrial DNA), recently well-characterized on the continental road, from the Balkans to West Germany (Rhine River). In the present study, the first mitochondrial DNA data from groups associated with this continental expansion wave located west of the Rhine River has been provided and their genetic affinities with contemporary groups have been discussed. MATERIAL AND METHODS: The mitochondrial DNA analysis of 27 human remains originating from Obernai (5,000-4,400 cal. BC), a necropolis located in French Alsace Region and attributed to Grossgartach, Planig-Friedberg, and Roessen cultures was conducted. RESULTS AND DISCUSSION: Among the 27 individuals studied, 15 HVR-I sequences and 17 mitochondrial haplogroups could be determined. The analysis of the Obernai gene pool clearly confirmed the genetic homogeneity of Linearbandkeramik (LBK) groups on both sides of the Rhine River. Notably, one N1a sequence found in Obernai is shared with LBK farmers from Central Europe, including one individual from the Flomborn site located approximately 200 km north-east of Obernai. On the whole, data gathered so far showed major genetic influence of the Danubian wave from Transdanubia to Atlantic French Coast, going by Alsace Region. However, the genetic influence of descendants from the Mediterranean Neolithic expansion and the significant hunter-gatherer admixture detected further west in the Paris Basin were not perceived in the Obernai necropolis. CONCLUSIONS: Genetic homogeneity and continuity within LBK groups can be proposed on both sides of the Rhine River for the middle Neolithic groups. Nevertheless, mitochondrial data gathered so far for Neolithic groups from the entire extant French Territory clearly point out the complexity and the variability of Neolithic communities interactions that is worthy of further investigation.


Asunto(s)
ADN Antiguo/análisis , ADN Mitocondrial/genética , ADN Mitocondrial/historia , Agricultura , Antropología Física , Francia , Haplotipos/genética , Historia Antigua , Humanos
12.
PLoS One ; 11(2): e0148583, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26910855

RESUMEN

The rapid Arab-Islamic conquest during the early Middle Ages led to major political and cultural changes in the Mediterranean world. Although the early medieval Muslim presence in the Iberian Peninsula is now well documented, based in the evaluation of archeological and historical sources, the Muslim expansion in the area north of the Pyrenees has only been documented so far through textual sources or rare archaeological data. Our study provides the first archaeo-anthropological testimony of the Muslim establishment in South of France through the multidisciplinary analysis of three graves excavated at Nimes. First, we argue in favor of burials that followed Islamic rites and then note the presence of a community practicing Muslim traditions in Nimes. Second, the radiometric dates obtained from all three human skeletons (between the 7th and the 9th centuries AD) echo historical sources documenting an early Muslim presence in southern Gaul (i.e., the first half of 8th century AD). Finally, palaeogenomic analyses conducted on the human remains provide arguments in favor of a North African ancestry of the three individuals, at least considering the paternal lineages. Given all of these data, we propose that the skeletons from the Nimes burials belonged to Berbers integrated into the Umayyad army during the Arab expansion in North Africa. Our discovery not only discusses the first anthropological and genetic data concerning the Muslim occupation of the Visigothic territory of Septimania but also highlights the complexity of the relationship between the two communities during this period.


Asunto(s)
Arqueología , Entierro , Genómica , Islamismo , Paleontología , Etnicidad , Francia , Humanos , Masculino
13.
PLoS One ; 10(4): e0125521, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25928633

RESUMEN

An intense debate concerning the nature and mode of Neolithic transition in Europe has long received much attention. Recent publications of paleogenetic analyses focusing on ancient European farmers from Central Europe or the Iberian Peninsula have greatly contributed to this debate, providing arguments in favor of major migrations accompanying European Neolithization and highlighting noticeable genetic differentiation between farmers associated with two archaeologically defined migration routes: the Danube valley and the Mediterranean Sea. The aim of the present study was to fill a gap with the first paleogenetic data of Neolithic settlers from a region (France) where the two great currents came into both direct and indirect contact with each other. To this end, we analyzed the Gurgy 'Les Noisats' group, an Early/Middle Neolithic necropolis in the southern part of the Paris Basin. Interestingly, the archaeological record from this region highlighted a clear cultural influence from the Danubian cultural sphere but also notes exchanges with the Mediterranean cultural area. To unravel the processes implied in these cultural exchanges, we analyzed 102 individuals and obtained the largest Neolithic mitochondrial gene pool so far (39 HVS-I mitochondrial sequences and haplogroups for 55 individuals) from a single archaeological site from the Early/Middle Neolithic period. Pairwise FST values, haplogroup frequencies and shared informative haplotypes were calculated and compared with ancient and modern European and Near Eastern populations. These descriptive analyses provided patterns resulting from different evolutionary scenarios; however, the archaeological data available for the region suggest that the Gurgy group was formed through equivalent genetic contributions of farmer descendants from the Danubian and Mediterranean Neolithization waves. However, these results, that would constitute the most ancient genetic evidence of admixture between farmers from both Central and Mediterranean migration routes in the European Neolithization debate, are subject to confirmation through appropriate model-based approaches.


Asunto(s)
Arqueología/métodos , Agricultores/estadística & datos numéricos , ADN Mitocondrial/genética , Europa (Continente) , Francia , Haplotipos/genética , Humanos , Datos de Secuencia Molecular , Paris , Población Blanca
14.
Proc Biol Sci ; 280(1764): 20131070, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23782887

RESUMEN

Numerous plant species are shifting their range polewards in response to ongoing climate change. Range shifts typically involve the repeated establishment and growth of leading-edge populations well ahead of the main species range. How these populations recover from founder events and associated diversity loss remains poorly understood. To help fill this gap, we exhaustively investigated a newly established population of holm oak (Quercus ilex) growing more than 30 km ahead of the nearest larger stands. Pedigree reconstructions showed that plants belong to two non-overlapping generations and that the whole population originates from only two founder trees. The four first-generation trees that have reached maturity showed disparate mating patterns despite being full-sibs. Long-distance pollen immigration was notable despite the strong isolation of the stand: 6 per cent gene flow events in acorns collected on the trees (n = 255), and as much as 27 per cent among their established offspring (n = 33). Our results show that isolated leading-edge populations of wind-pollinated forest trees can rapidly restore their genetic diversity through the interacting effects of efficient long-distance pollen flow and purging of inbred individuals during recruitment. They imply that range expansions of these species are primarily constrained by initial propagule arrival rather than by subsequent gene flow.


Asunto(s)
Efecto Fundador , Genética de Población , Quercus/genética , Francia , Flujo Génico , Frecuencia de los Genes , Variación Genética , Repeticiones de Microsatélite , Polen/genética , Polinización , Semillas/genética , Viento
15.
Evol Anthropol ; 21(1): 24-37, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22307722

RESUMEN

Neolithic processes underlying the distribution of genetic diversity among European populations have been the subject of intense debate since the first genetic data became available. However, patterns observed in the current European gene pool are the outcome of Paleolithic and Neolithic processes, overlaid with four millennia of further developments. This observation encouraged paleogeneticists to contribute to the debate by directly comparing genetic variation from the ancient inhabitants of Europe to their contemporary counterparts. Pre-Neolithic and Neolithic paleogenetic data are becoming increasingly available for north and northwest European populations. Despite the numerous problems inherent in the paleogenetic approach, the accumulation of ancient DNA datasets offers new perspectives from which to interpret the interactions between hunter-gatherer and farming communities. In light of information emerging from diverse disciplines, including recent paleogenetic studies, the most plausible model explaining the movement of Neolithic pioneer groups in central Europe is that of leapfrog migration.


Asunto(s)
ADN/genética , Emigración e Inmigración , Filogeografía , Población Blanca/genética , Agricultura , Antropología Física , Humanos
16.
Forensic Sci Int ; 210(1-3): 102-9, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21367547

RESUMEN

The analysis of DNA from archaeological human remains is plagued by a unique set of methodological problems concerning contamination with modern exogenous DNA. Through an original approach, we propose complementary methods to identify all potential sources of contamination and complete guidelines for the validation of ancient human sequences. The study presented was conducted on non-European human samples (Polynesian and Amerindian) which were collected with all precautions during excavation. This permitted us to distinguish without ambiguity authentic and contaminant sequences. The samples' origins and histories were perfectly known, allowing us to trace all potential contamination sources and to determine the efficiency of precautions followed during all steps of the study. The data obtained confirm that precautions taken during sampling effectively prevent contamination. However, we demonstrate that human contamination can also be introduced during genetic analyses even if all precautions are strictly followed. Indeed, numerous human contaminations were detected in template-PCR products and negative controls, resulting in a striking diversity of contaminant mitochondrial DNA sequences. We argue that this contamination partly derives from the primers. To our knowledge, no previous experiment has been performed to investigate primers as a possible source of human contamination despite the fact that this specific type of contamination poses a real problem in terms of validating ancient human DNA studies. Finally, we confirm that the detection of contaminants in negative controls is clearly related to the number of PCR cycles used. This study enhances our understanding of contamination processes and confirms that, in reality, an absolutely contamination-free situation cannot be obtained. As a consequence, we propose improvements to the guidelines usually followed in the field in order to take the highly probable contamination of PCR reagents, including primers, into account.


Asunto(s)
Contaminación de ADN , Cartilla de ADN , ADN Mitocondrial/genética , Arqueología , Regiones Determinantes de Complementariedad/genética , Humanos , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Manejo de Especímenes
17.
Am J Phys Anthropol ; 144(1): 108-18, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20717990

RESUMEN

Recent paleogenetic studies have confirmed that the spread of the Neolithic across Europe was neither genetically nor geographically uniform. To extend existing knowledge of the mitochondrial European Neolithic gene pool, we examined six samples of human skeletal material from a French megalithic long mound (c.4200 cal BC). We retrieved HVR-I sequences from three individuals and demonstrated that in the Neolithic period the mtDNA haplogroup N1a, previously only known in central Europe, was as widely distributed as western France. Alternative scenarios are discussed in seeking to explain this result, including Mesolithic ancestry, Neolithic demic diffusion, and long-distance matrimonial exchanges. In light of the limited Neolithic ancient DNA (aDNA) data currently available, we observe that all three scenarios appear equally consistent with paleogenetic and archaeological data. In consequence, we advocate caution in interpreting aDNA in the context of the Neolithic transition in Europe. Nevertheless, our results strengthen conclusions demonstrating genetic discontinuity between modern and ancient Europeans whether through migration, demographic or selection processes, or social practices.


Asunto(s)
ADN Mitocondrial/genética , Emigración e Inmigración , Polimorfismo Genético , Población Blanca/genética , Adulto , Arqueología , Secuencia de Bases , Cementerios , Niño , Francia , Haplotipos , Historia Antigua , Humanos , Masculino , Datos de Secuencia Molecular , Filogenia , Población Blanca/historia , Adulto Joven
18.
Am J Phys Anthropol ; 144(2): 248-57, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20872803

RESUMEN

Molecular anthropology has been widely used to infer the origin and processes of the colonization of Polynesia. However, there are still a lack of representative geographical studies of Eastern Polynesia and unchallenged genetic data about ancient Polynesian people. The absence of both of these elements prevents an accurate description of the demographic processes of internal dispersion within the Polynesian triangle. This study provides a twofold analysis of ancient and modern mtDNA in the eastern part of French Polynesia: the Gambier Islands. The paleogenetic analyses conducted on burials of the Temoe Atoll (14(th) -17(th) centuries) represent the first fully authenticated ancient human sequences from Polynesia. The identification of the "Melanesian" Q1 mtDNA lineage in ancient human remains substantiates the Near Oceanic contribution to the early gene pool of this region. Modern samples originate from Mangareva Island. Genealogical investigations enable us to reliably identify the conservation of the Melanesian component in Easternmost Polynesia, despite recent European colonization. Finally, the identification of rare mutations in sequences belonging to haplogroup B4a1a1a provides new perspectives to the debate on the internal peopling of the Polynesian region. Altogether, the results laid out in our study put the emphasis on the necessity of controlled sampling when discussing the internal settlement of Polynesia.


Asunto(s)
ADN Mitocondrial/genética , Fósiles , Nativos de Hawái y Otras Islas del Pacífico/genética , Antropología/métodos , Emigración e Inmigración , Marcadores Genéticos/genética , Variación Genética , Humanos , Melanesia , Polinesia , Análisis de Secuencia de ADN
19.
Proc Biol Sci ; 269(1495): 1039-46, 2002 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-12028761

RESUMEN

The importance of wood for human societies can hardly be understated. If dry wood were amenable to molecular genetic investigations, this could lead to major applications in wood forensics, certification, archaeology and palaeobotany. To evaluate the potential of wood for molecular genetic investigations, we have attempted to isolate and amplify, by PCR, DNA fragments of increasing size corresponding to all three plant genomes from different regions of 10 oak logs. Stringent procedures to avoid contamination with external DNA were used in order to demonstrate the authenticity of the fragments amplified. This authenticity was further confirmed by demonstrating genetic uniformity within each log using both nuclear and chloroplast microsatellites. For most wood samples DNA was degraded, and the sequences that gave the best results were those of small size and present in high copy number (chloroplast, mitochondrial, or repeated nuclear sequences). Both storage conditions and storage duration play a role in DNA conservation. Overall, this work demonstrates that molecular markers from all three plant genomes can be used for genetic analysis on dry oak wood, but outlines some limitations and the need for further evaluation of the potential of wood for DNA analysis.


Asunto(s)
ADN de Plantas/genética , Árboles/genética , Madera , Secuencia de Bases , Certificación , Cartilla de ADN , Amplificación de Genes , Genoma de Planta , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...